Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol J ; 14(2): e1700733, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29851298

RESUMO

In this study, the authors compared the impacts of fed-batch and perfusion platforms on process and product attributes for IgG1- and IgG4-producing cell lines. A "plug-and-play" approach is applied to both platforms at bench scale, using commercially available basal and feed media, a standard feed strategy for fed-batch and ATF filtration for perfusion. Product concentration in fed-batch is 2.5 times greater than perfusion, while average productivity in perfusion is 7.5 times greater than fed-batch. PCA reveals more variability in the cell environment and metabolism during the fed-batch run. LDH measurements show that exposure of product to cell lysate is 7-10 times greater in fed-batch. Product analysis shows larger abundances of neutral species in perfusion, likely due to decreased bioreactor residence times and extracellular exposure. The IgG1 perfusion product also has higher purity and lower half-antibody. Glycosylation is similar across both culture modes. The first perfusion harvest slice for both product types shows different glycosylation than subsequent harvests, suggesting that product quality lags behind metabolism. In conclusion, process and product data indicate that intra-lot heterogeneity is decreased in perfusion cultures. Additional data and discussion is required to understand the developmental, clinical and commercial implications, and in what situations increased uniformity would be beneficial.


Assuntos
Anticorpos Monoclonais/biossíntese , Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos , Animais , Anticorpos Monoclonais/metabolismo , Células CHO , Contagem de Células , Sobrevivência Celular , Cricetulus , Meios de Cultura , Glicosilação , Imunoglobulina G/biossíntese , Imunoglobulina G/metabolismo , Fatores de Tempo
2.
Biotechnol J ; 13(10): e1700518, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29405605

RESUMO

13 C metabolic flux analysis (MFA) provides a rigorous approach to quantify intracellular metabolism of industrial cell lines. In this study, 13 C MFA was used to characterize the metabolic response of Chinese hamster ovary (CHO) cells to a novel medium variant designed to reduce ammonia production. Ammonia inhibits growth and viability of CHO cell cultures, alters glycosylation of recombinant proteins, and enhances product degradation. Ammonia production was reduced by manipulating the amino acid composition of the culture medium; specifically, glutamine, glutamate, asparagine, aspartate, and serine levels were adjusted. Parallel 13 C flux analysis experiments determined that, while ammonia production decreased by roughly 40%, CHO cell metabolic phenotype, growth, viability, and monoclonal antibody (mAb) titer were not significantly altered by the changes in media composition. This study illustrates how 13 C flux analysis can be applied to assess the metabolic effects of media manipulations on mammalian cell cultures. The analysis revealed that adjusting the amino acid composition of CHO cell culture media can effectively reduce ammonia production while preserving fluxes throughout central carbon metabolism.


Assuntos
Aminoácidos/química , Amônia , Carbono , Meios de Cultura/química , Amônia/química , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Células CHO , Carbono/química , Cricetulus , Glicosilação , Análise do Fluxo Metabólico/métodos , Proteínas Recombinantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...